Inference of Seasonal Long-memory Aggregate Time Series
نویسنده
چکیده
Time-series data with regular and/or seasonal long-memory are often aggregated before analysis. Often, the aggregation scale is large enough to remove any short-memory components of the underlying process but too short to eliminate seasonal patterns of much longer periods. In this paper, we investigate the limiting correlation structure of aggregate time series within an intermediate asymptotic framework that attempts to capture the aforementioned sampling scheme. In particular, we study the autocorrelation structure and the spectral density function of aggregates from a discrete-time process. The underlying discrete-time process is assumed to be a stationary Seasonal AutoRegressive Fractionally Integrated Moving-Average (SARFIMA) process, after suitable number of differencing if necessary, and the seasonal periods of the underlying process are multiples of the aggregation size. We derive the limit of the normalized spectral density function of the aggregates, with increasing aggregation. The limiting aggregate (seasonal) long-memory model may then be useful for analyzing aggregate time-series data, which can be estimated by maximizing the Whittle likelihood. We prove that the maximum Whittle likelihood estimator is consistent and
منابع مشابه
Estimating seasonal long-memory processes: a Monte Carlo study
This paper discusses extensions of the popular methods proposed by Geweke and Porter-Hudak [Geweke, J. and Porter-Hudak, S., 1983, The estimation and application of long memory times series models. Journal of Time Series Analysis, 4(4), 221–238.] and Fox and Taqqu [Fox, R. and Taqqu, M.S., 1986, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time serie...
متن کاملEfficient Bayesian inference for natural time series using ARFIMA processes
Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a sy...
متن کاملLong Memory in Stock Returns: A Study of Emerging Markets
The present study aimed at investigating the existence of long memory properties in ten emerging stock markets across the globe. When return series exhibit long memory, it indicates that observed returns are not independent over time. If returns are not independent, past returns can help predict future returns, thereby violating the market efficiency hypothesis. It poses a serious challenge to ...
متن کاملSemiparametric estimation of long-memory volatility dependencies: The role of high-frequency data
Recent empirical studies have argued that the temporal dependencies in "nancial market volatility are best characterized by long memory, or fractionally integrated, time series models. Meanwhile, little is known about the properties of the semiparametric inference procedures underlying much of this empirical evidence. The simulations reported in the present paper demonstrate that, in contrast t...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کامل